

Optimal Algorithms
for Finding the Symmetries

of a Planar Point Set

P. T. Highnam

CMU-RI-TR-85-13

Department of Computer Science
The Robotics Institute

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

August 1985

Copyright @ 1985 Carnegie-Mellon University

This work was sponsored in part by the Defense Advanced Research Projects Agency (DoD) ARPA Order
No. 3597, Amendment No. 18. monitored by Air Force Wright Aeronautical Laboratories Avionics
Laboratory under Contract Number F33615-83-C-1023.

DTIC'AELECTED
Appmved i P p lea " B

Distributm Unlimite

Abstract

We present an asymptotically optimal algorithm to locate all the axes of mirror symmetry of a planar point

set. The algorithm was derived by reducing the 2-D symmetry problem to linear pattern-matching. Optimal

algorithms for finding rotational symmetries and deciding whether a point symmetry exists are also presented.

(I

1. Introduction

A set of points P in the plane has an axis of mirror symmetry A when for every point p of P not lying on A

there is another point p in P s.t. A is thc perpendicular bisector of thc linc pp . P has a rotational symmetry

of a when rotating P about its centroid C by a is an identity operation on P. P has a point symmetry (which

must be at C) precisely when P has a rotational symmetry of w.

This note presents an optimal O(n log n) algorithm for discovering all the mirror symmetries of an n point

set P in detail and describes the changes needed to detect the rotational symmetries (and hence the existence

of a point symmetry). Lower bounds are shown for each problem. Mirror symmetries are the objects of

interest until section 5.

The 2-D mirror symmetry problem is reduced to a 1-D pattern-matching problem for which fast solutions

are well-known. Any A must pass through the centroid C of P, so the points are first translated so that (0,0)

corresponds to C. After expressing the points in polar coordinates, sort them increasing-distance-within-

increasing angle from a reference direction. For each unique angle (at most n), replace the set of points

residing at that angle (i.e., 2 1 point) by a tuple which is simply a list of their distance components. Let the

number of unique angles be m (n). Consider the result as a length 2m, string F, the symbols of which are

alternately tuples and the angles between adjacent tuples. The mirror symmetries of P correspond exactly to

the length 2m subsequences of FF which are palindromes.

The palindromes can be discovered by a fast one-dimensional string matching algorithm, looking for

occurrences of the reversal ofF in FF. One such algorithm is that of Knuth, Morris and Pratt [1] ("KMP")

which permits the detection of aU occurrences of apauern within a text in time proportional to the sum of the

lengths of the text and pattern.

Section 2 of this report contains the algorithm, and section 3 contains proof of why the algorithm works. in--

section 4 we demonstratethat it is impossible to improve the asymptotic time bound.:1 n section S wq present,-

a variant of the basic algorithm which detects the rotational symmetries and point symmetry, and a proof that

these are also optimal .

I.

r.
p--.-.-,-.- ""'.'.','.'? .-.-,- ? .-.- ---..: - ... " ' ' ---- " " " " -" -" -" " -" " -

2

2. Algorithm

lnpul: n point planar point set P, (p. for i =0(l)n-1).

Output : The ccntroid of P and the orientations of each of its axes of mirror symmetry.

I. Find the centroid C of P. Translate the point set so that the origin coincides with C.

2. Select an arbitrary reference direction (for convenience we choose the direction of p0). Represent
the points in polar coordinates with the angle componen" as measured anticlockwisc from the
reference direction, denote point p, as (r ,).

3. Sort the points by increasing-distance-wihin-incrcasing-angle. Delete any points that have zero
distance (r, = 0). Let the number of different angles be m S n.

4. For each of the m different angles, represent its set of points in a single tuple. which simply holds
the set of distances at that angle. Beginning at the reference direction, proceed through the list of
tuples in order of increasing. angle, generating the length 2m string F: at the current position
append the tuple to the string; move to the next tuplc, appending the angle traversed to the string.
Finish when returning to the reference direction. The first element of this string is a tuple. angles
and tuples alternate within iL Create the length 2m string R and the length 4m-2 string F as
shown below:

R = to ... 'f

5. Employ a string-matching algorithin such as KMP to locate all of the matches of R in F' . From
the definition of F the only matches are possible beginning at even indices (since fo is a tople).
Denote the size t (0 -S t <5 m) list of indices ofF1 at which a match can begin by Ij(j =0(1) t-1).

6. Compute for each match index I the orientation of an axis of mirror symmetry A,. Let k = I1 /2,

k is even = > AJ passes through tple fk

k isodd => Aj bisects angle f.

3. Details

In this section we demonstrate that there is a 1:1 mapping between the axes of mirror symmetry of the point

set and the successful matches of R in F1 . We also derive the formula for finding the orientation of the

corresponding axis from a match.

A plindrome is a string of symbols with the property that in whichever direction it is read, it will give the

same Wn % s - s.1 = sA.. 1 s 0 . An i palindrome is a string with the property that if the symbol with
index I is deleted and the left remaining substring is appended to the right of the right remaining substrin&

then the new string isa palindrome, s,+ 1 " - -S. : -So, s!"s+i

.. ,. . . . -. - , - .. , % . .-. --. , , ,, -. , , . . , -, .- , . -
s • a" • ,- Q *.° • J - - -° " o ," " o .° Q" " " • • " . -

3

Iecause the tuples do not necessarily have a unique distancc associatcd with them. we can consider thse t

of tupics I f,, for i = 0 to m-1 I as laid out on the perimeter of a circle (diameter unimportant, ccntrc at the

centr)id of the point set), with tuplcs f2,and f2, +2 separated by the angle f:, + . Tupies f -n-2 and fo are

separated by angle f2m-1 • The axes of this representation arc precisely the axes of the original point set.

The notation used is that of the algorithm of section 2. F = f0 f) ... f ,m-1 , where m is the number of tuples
and an element f. is either an angle (iis odd), or a Cuple (Uis even). R = fo f2n f 2 ... f1, and

F1 = fo f! '2m-1 fO fl "" f2m- 3 " We say that R matches Ft at index i when the length 2m substring of F1

£'" fm-I fo'" fi- matches R. For all such matches imust be even because f0 is a tuple and the tuples all

appear with even index in F.

LEMMA For any k (0 < k < m): F is a k -palindromeif" R matches F 1 at index 2k.

Define substrings,

a= fk+I'-fk. (Length k -1)

a2 = f2k +1 - fm- 1 (Length 2m-2k -1)

a3 = to ... fk - (Length k)

bl -- fk-1 "" 1 (Length k -i)

b2 = - +1 (Length 2-2k -1)

b3 + (Length)

When F is a k-palindrome and k< m we know that fk + 1 "fk-j is a palindrome. More specifically,

a1 f2k a2 a3 = b, fo b2 b3 " Therefore f2k = fo' a, = b1 1a 2 = b2 ' and a3 = b3 using the substring lengths

given above.

When R matches F 1 at index 2k we know f2 a2 a3 f, a, = fo b2 b3 fk b, The equivalences here are again

fk = to, a, = bla 2 = b2 , and a3 = b3 .

Because the equivalences enforced are the same in both cases the two situations are the same.

When an axis A passes through a tuple fzl. then F is a 2i -palindrome. Similarly, if A bisects the angle

f2j+ I then F is a (2i + 1)-palindrome.

4

LEMMA For any k (0 :< k < m): F is a k -palindrome iff.k is even and there is an axis A passing
through tuple fk' or k is odd and thcre is an axis A bisecting the angle fk"

Thcre are two cases to censider,

" k is odd. Let k = 2i + 1. That F is a (2i + 1)-palindrome is precisely the condition brought about
by A bisecting angle f2, +I .

" k is even. Let k = 2i. "hat F is a 2i -palindrome is precisely the condition brought about by A
passing through tuple f2i"

We have shown by the two lemmas that for any k (0 k < m), there is an axis A passing through tuple fk (k

is even), or an axis A bisecting angle fk (k is odd) precisely when there is a match for R in F 1 at index 2k. It

remains to point out that this is sufficient to capture all axes because an axis A must cut the circle at two points

v apart and in having k range from 0 to m-1 we have covered a complete semi-circle.

4. Complexity
In this section we show that the complexity of the algorithm presented in Section 2 matches that of the

problem and so is optimal, i.e., the algorithm is O(n log n) and the problem is shown to be Q(n log n). To

show the latter we use a reduction of the set equivalence problem to that of deciding whether there is or is not

an axis of mirror symmetry in a planar point set. This also shows that it is no harder to find all the axes of

mirror symmetry than it is to find whether there are any at all.

From the description of the algorithm in section 2 we can see that it is O(n log n), and this derives from the

sorting operation of Step 3. Steps 1.Z4 and 6 are clearly O(n) while Step 5 can be done in O(n) time using a

string matching algorithm such as KMP. The worst-case complexity of the KMP algorithm is not affected by

alphabet size.

Given two sets of n real numbers we wish to decide whether or not they are the same. This problem is

known to be U(n log n) work.

Call the sets A and B and then proceed as follows:

1. Find the lowest value L. in A and the lowest value LB in B.

2. Create the set A 1 from A by adding the element a -LA to A for each a in A. Similarly create Bt

, . "...,. ---... . m --" d
--

d rmam i - " -" - " "' . .. -.
"

. -

from B using 1 8 .

3. Manufacture the 2I) point sct P defined as 1(a. a): a E A'} U {(b, -b): bE B1}.

4. Find the axes of mirror symmetry of the set P. If P has an axis of mirror symmetry then A and B
are the same, else they are noL

The set P defined above will have at most one axis of mirror symmetry and this if present will correspond to

the 'x-axis' of the 2D system created.

5. Rotational and point symmetries

In this section we present a version of the algorithm of section 2 which will find all the rotational

symmetries of point set P. Hence, as noted in the introduction, we will also have discovered whether the set

has a point-symmetry because that is identical to a rotational symmetry of ir.

A rotational symmetry is an angle a s.t. rotation of P by a about its centroid is an identity operation on P.

Furthermore, if a0 is the smallest such angle then the set of angles of rotational symmetry is precisely the set

of integer multiples of ao . Hence, it is only necessary to find a0 .

Given the string representation F of P, proceed by matching F against F ',starting with the first element of

F at f2 and moving to the right. This avoids a meaningless match ofF with itself as prefix ofF 1 and because

angle a0 corresponds to the lowest index at which F will match F '. Stop when the first match is found (or a

failure occurred at the end of F , implying no rotations). Let the index of the match in F 1 be i, which must

be even as before. The corresponding a0 is the sum of the angles in F' lying to the left of the match,
ao =ff + f3 + '- f't-1"-

The complexity of this algorithm is the same as that of the mirror symmetry algorithm, O(n log n).

Checking whether a0 is an integer divisor of v is constant time work and so O(n log n) applies to the point

symmetry decision too.

We now show that deciding whether P is point-symmetric is O(n log n) and so the algorithm above for

rotational symmetry and point symmetry is optimal. As in section 4, use the problem of deciding whether the

two sets A and B are identical. We show that this is no harder than deciding if P is point-symmetric by the

following algorithm:

1. Find the lowest value LA in A and the lowest value LB in B.

2. Create the set A from A by adding the element a - LA to A' for each a in A. Similarly create B
from B using LB.

"-
"

-%- - -- "-- -- -

6

3. Manufacturcthe 2-D point setPdefined as{(a, a): a E A' U{(-b,-b): bE3.

4. Decide whether P is point-symmetric, if it is then A and 11 are the same, else they are not.

6. Acknowledgments

Dan Hocy provided helpful discussion at the right time. It's been a very long time since this was written

and several people have made comments which have improved the presentation particularly G.J. Agin.

References
[11 D.E.KnuthJames H.Morris Jr. and V.R.Pratt, Fast Pattern Matching in Strings, SIAM J COMPUT6,

2 (June 1977). 323-350.

